CHAPTER 6
BUILDING SERVICES AND SYSTEMS

SECTION 601
GENERAL

601.1 Scope. The provisions of this chapter shall apply to the installation, operation and maintenance of fuel-fired appliances and heating systems, emergency and standby power systems, electrical systems and equipment, mechanical refrigeration systems, elevator recall, stationary storage battery systems and commercial kitchen hoods.

601.2 Permits. Permits shall be obtained for refrigeration systems and battery systems as set forth in Sections 105.6 and 105.7.

SECTION 602
DEFINITIONS

602.1 Definitions. The following words and terms shall, for the purposes of this chapter and as used elsewhere in this Code, have the meanings shown herein.

BATTERY SYSTEM, STATIONARY LEAD ACID. A system which consists of three interconnected subsystems:
1. A lead-acid battery.
2. A battery charger.
3. A collection of rectifiers, inverters, converters, and associated electrical equipment as required for a particular application.

BATTERY TYPES

Nickel cadmium (Ni-Cd) battery. An alkaline storage battery in which the positive active material is nickel oxide, the negative contains cadmium and the electrolyte is potassium hydroxide.

Nonrecombinant battery. A storage battery in which, under conditions of normal use, hydrogen and oxygen gases created by electrolysis are vented into the air outside of the battery.

Recombinant battery. A storage battery in which, under conditions of normal use, hydrogen and oxygen gases created by electrolysis are converted back into water inside the battery instead of venting into the air outside of the battery.

Stationary storage battery. A group of electrochemical cells interconnected to supply a nominal voltage of DC power to a suitably connected electrical load, designed for service in a permanent location. The number of cells connected in a series determines the nominal voltage rating of the battery. The size of the cells determines the discharge capacity of the entire battery. After discharge, it may be restored to a fully charged condition by an electric current flowing in a direction opposite to the flow of current when the battery is discharged.

Valve-regulated lead-acid (VRLA) battery. A lead-acid battery consisting of sealed cells furnished with a valve that opens to vent the battery whenever the internal pressure of the battery exceeds the ambient pressure by a set amount. In VRLA batteries, the liquid electrolyte in the cells is immobilized in an absorptive glass mat (AGM cells or batteries) or by the addition of a gelling agent (gel cells or gelled batteries).

Vented (FloODED) lead-acid battery. A lead-acid battery consisting of cells that have electrodes immersed in liquid electrolyte. Flooded lead-acid batteries have a provision for the user to add water to the cell and are equipped with a flame-arresting vent which permits the escape of hydrogen and oxygen gas from the cell in a diffused manner such that a spark, or other ignition source, outside the cell will not ignite the gases inside the cell.

[M] COMMERCIAL COOKING APPLIANCES. Appliances used in a commercial food service establishment for heating or cooking food and which produce grease vapors, steam, fumes, smoke or odors that are required to be removed through a local exhaust ventilation system. Such appliances include deep fat fryers; upright broilers; griddles; broilers; steam-jacketed kettles; hot-top ranges; under-fired broilers (charbroilers); ovens; barbecues; rotisseries; and similar appliances. For the purpose of this definition, a food service establishment shall include any building or a portion thereof used for the preparation and serving of food.

[M] HOOD. An air-intake device used to capture by entrainment, impingement, adhesion or similar means, grease and similar contaminants before they enter a duct system.

Type I. A kitchen hood for collecting and removing grease vapors and smoke.

REFRIGERANT. The fluid used for heat transfer in a refrigerating system; the refrigerant absorbs heat and transfers it at a higher temperature and a higher pressure, usually with a change of state.

REFRIGERATION SYSTEM. A combination of interconnected refrigerant-containing parts constituting one closed refrigerant circuit in which a refrigerant is circulated for the purpose of extracting heat.

SECTION 603
FUEL-FIRED APPLIANCES

603.1 Installation. The installation of nonportable fuel gas appliances and systems shall comply the International Fuel Gas Code. The installation of all other fuel-fired appliances, other than internal combustion engines, oil lamps and portable devices such as blow torches, melting pots and weed burners, shall comply with this section and the International Mechanical Code.

603.1.1 Manufacturer’s instructions. The installation shall be made in accordance with the manufacturer’s instructions and applicable federal, state, and local rules and
603.3 Fuel oil storage systems. Fuel oil storage systems shall be installed in accordance with this code. Fuel oil piping systems shall be installed in accordance with the International Mechanical Code.

603.3.1 Maximum outside fuel oil storage above ground. Where connected to a fuel-oil piping system, the maximum amount of fuel oil storage allowed outside above ground without additional protection shall be 660 gallons (2498 L). The storage of fuel oil above ground in quantities exceeding 660 gallons (2498 L) shall comply with NFPA 31.

603.3.2 Maximum inside fuel oil storage. Where connected to a fuel-oil piping system, the maximum amount of fuel oil storage allowed inside any building shall be 660 gallons (2498 L). Where the amount of fuel oil stored inside a building exceeds 660 gallons (2498 L), the storage area shall be in compliance with the International Building Code.

603.3.3 Underground storage of fuel oil. The storage of fuel oil in underground storage tanks shall comply with NFPA 31.

603.3.4 Plans. Plan requirements for above-ground fuel oil storage tanks, see Section 3401.4.1.

603.4 Portable unvented heaters. Portable unvented fuel-fired heating equipment shall be prohibited in occupancies in Groups A, E, I, R-1, R-2, R-3, R-4 and SR.

Exception: Listed and approved unvented fuel-fired heaters in one- and two-family dwellings.

603.4.1 Prohibited locations. Unvented fuel-fired heating equipment shall not be located in, or obtain combustion air from, any of the following rooms or spaces: sleeping rooms, bathrooms, toilet rooms or storage closets.

603.5 Heating appliances. Heating appliances shall be listed and shall comply with this section.

603.5.1 Guard against contact. The heating element or combustion chamber shall be permanently guarded so as to prevent accidental contact by persons or material.

603.5.2 Heating appliance installation and maintenance. Heating appliances shall be installed and maintained in accordance with the manufacturer’s instructions, the International Building Code, the International Mechanical Code, the International Fuel Gas Code and the International Code Council Electrical Code Administrative Provisions.

603.6 Chimneys and appliances. Chimneys, incinerators, smokestacks or similar devices for conveying smoke or hot gases to the outer air and the stoves, furnaces, fireboxes or boilers to which such devices are connected, shall be maintained so as not to create a fire hazard.

603.6.1 Masonry chimneys. Masonry chimneys that, upon inspection, are found to be without a flue liner and that have open mortar joints which will permit smoke or gases to be discharged into the building, or which are cracked as to be dangerous, shall be repaired or relined with a listed chimney liner system installed in accordance with the manufacturer’s installation instructions or a flue lining system installed in accordance with the requirements of the International...
Building Code and appropriate for the intended class of chimney service.

603.6.2 Metal chimneys. Metal chimneys which are corroded or improperly supported shall be repaired or replaced.

603.6.3 Decorative shrouds. Decorative shrouds installed at the termination of factory-built chimneys shall be removed except where such shrouds are listed and labeled for use with the specific factory-built chimney system and are installed in accordance with the chimney manufacturer’s installation instructions.

603.6.4 Factory-built chimneys. Existing factory-built chimneys that are damaged, corroded or improperly supported shall be repaired or replaced.

603.6.5 Connectors. Existing chimney and vent connectors that are damaged, corroded or improperly supported shall be repaired or replaced.

603.7 Discontinuing operation of unsafe heating appliances. The fire code official is authorized to order that measures be taken to prevent the operation of any existing stove, oven, furnace, incinerator, boiler or any other heat-producing device or appliance found to be defective or in violation of code requirements for existing appliances after giving notice to this effect to any person, owner, firm or agent or operator in charge of the same. The fire code official is authorized to take measures to prevent the operation of any device or appliance without notice when inspection shows the existence of an immediate fire hazard or when imperiling human life. The defective device shall remain withdrawn from service until all necessary repairs or alterations have been made.

603.7.1 Unauthorized operation. It shall be a violation of this code for any person, user, firm or agent to continue the utilization of any device or appliance (the operation of which has been discontinued or ordered discontinued in accordance with Section 603.7), unless written authority to resume operation is given by the fire code official. Removing or breaking the means by which operation of the device is prevented shall be a violation of this code.

603.8 Incinerators. Commercial, industrial and residential-type incinerators and chimneys shall be constructed in accordance with the International Building Code, the International Fuel Gas Code and the International Mechanical Code.

603.8.1 Residential incinerators. Residential incinerators shall be of an approved type.

603.8.2 Spark arrestor. Incinerators shall be equipped with an effective means for arresting sparks.

603.8.3 Restrictions. Where the fire code official determines that burning in incinerators located within 500 feet (152 m) of mountainous, brush or grass-covered areas will create an undue fire hazard because of atmospheric conditions, such burning shall be prohibited.

603.8.4 Time of burning. Burning shall take place only during approved hours.

603.8.5 Discontinuance. The fire code official is authorized to require incinerator use to be discontinued immediately if the fire code official determines that smoke emissions are offensive to occupants of surrounding property or if the use of incinerators is determined by the fire code official to constitute a hazardous condition.

603.9 Gas meters. Above-ground gas meters, regulators and piping subject to damage shall be protected by a barrier complying with Section 312 or otherwise protected in an approved manner.

SECTION 604
EMERGENCY AND STANDBY POWER SYSTEMS

604.1 Installation. Emergency and standby power systems required by this code or the International Building Code shall be installed in accordance with this code, NFPA 110 and NFPA 111. Existing installations shall be maintained in accordance with the original approval.

604.1.1 Stationary generators. Stationary emergency and standby power generators required by this code shall be listed in accordance with UL 2200.

604.2 Where required. Emergency and standby power systems shall be provided where required by Sections 604.2.1 through 604.2.19.4.

604.2.1 Group A occupancies. Emergency power shall be provided for emergency voice/alarm communication systems in Group A occupancies in accordance with Section 907.2.12.2.

604.2.2 Smoke control systems. Standby power shall be provided for smoke control systems in accordance with Section 909.11.

604.2.3 Exit signs. Emergency power shall be provided for exit signs in accordance with Section 1011.5.3

604.2.4 Means of egress illumination. Emergency power shall be provided for means of egress illumination in accordance with Section 1006.3.

604.2.5 Accessible means of egress elevators. Standby power shall be provided for elevators that are part of an accessible means of egress in accordance with Section 1108.3.2 of the Oregon Structural Specialty Code.

604.2.6 Accessible means of egress platform lifts. Standby power in accordance with this section or ASME A18.1 shall be provided for platform lifts that are part of an accessible means of egress in accordance with Section 1108.3.3 of the Oregon Structural Specialty Code.

604.2.7 Horizontal sliding doors. Standby power shall be provided for horizontal sliding doors in accordance with Section 1008.1.3.3.

604.2.8 Semiconductor fabrication facilities. Emergency power shall be provided for semiconductor fabrication facilities in accordance with Section 1803.15.

604.2.9 Membrane structures. Emergency power shall be provided for exit signs in temporary tents and membrane structures in accordance with Section 2403.12.6.1. Standby power shall be provided for auxiliary inflation systems in permanent membrane structures in accordance with the International Building Code.
604.2.10 Hazardous materials. Emergency or standby power shall be provided in occupancies with hazardous materials in accordance with Sections 2704.7 and 2705.1.5.

604.2.11 Highly toxic and toxic materials. Emergency power shall be provided for occupancies with highly toxic or toxic materials in accordance with Sections 3704.2.2.8 and 3704.3.2.6.

604.2.12 Organic peroxides. Standby power shall be provided for occupancies with organic peroxides in accordance with Section 3904.1.11.

604.2.13 Pyrophoric materials. Emergency power shall be provided for occupancies with silane gas in accordance with Sections 4106.2.3 and 4106.4.3.

604.2.14 Covered mall buildings. Covered mall buildings exceeding 50,000 square feet (4645 m²) shall be provided with standby power systems which are capable of operating the emergency voice/alarm communication.

604.2.15 High-rise buildings. Standby power, light and emergency systems in high-rise buildings shall comply with the requirements of Sections 604.2.15.1 through 604.2.15.3.

604.2.15.1 Standby power. A standby power system shall be provided. Where the standby system is a generator set inside a building, the system shall be located in a separate room enclosed with 2-hour fire barriers or horizontal assemblies constructed in accordance with the International Building Code, or both. System supervision with manual start and transfer features shall be provided at the fire command center.

604.2.15.1.1 Fuel supply. An on-premises fuel supply, sufficient for not less than 2-hour full-demand operation of the system, shall be provided.

Exception: When approved, the system shall be allowed to be supplied by natural gas pipelines.

604.2.15.1.2 Capacity. The standby system shall have a capacity and rating that supplies all equipment required to be operational at the same time. The generating capacity is not required to be sized to operate all of the connected electrical equipment simultaneously.

604.2.15.1.3 Connected facilities. Power and lighting facilities for the fire command center and elevators specified in Sections 403.8 and 403.9 of the International Building Code, as applicable, and electrically powered fire pumps required to maintain pressure, shall be transferable to the standby source. Standby power shall be provided for at least one elevator to serve all floors and be transferable to any elevator.

604.2.15.2 Separate circuits and luminaires. Separate lighting circuits and luminaires shall be required to provide sufficient light with an intensity of not less than 1 foot-candle (11 lux) measured at floor level in all means of egress corridors, stairways, smokeproof enclosures, elevator cars and lobbies, and other areas that are clearly a part of the escape route.

604.2.15.2.1 Other circuits. Circuits supplying lighting for the fire command center and mechanical equipment rooms shall be transferable to the standby source.

604.2.15.3 Emergency systems. Exit signs, exit illumination as required by Chapter 10, and elevator car lighting are classified as emergency systems and shall operate within 10 seconds of failure of the normal power supply and shall be capable of being transferred to the standby source.

Exception: Exit sign, exit and means of egress illumination are permitted to be powered by a standby source in buildings of Group F and S occupancies.

604.2.16 Underground buildings. Emergency and standby power systems in underground buildings covered in Chapter 4 of the International Building Code shall comply with Sections 604.2.16.1 and 604.2.16.2.

604.2.16.1 Standby power. A standby power system complying with the International Code Council Electrical Code Administrative Provisions shall be provided for standby power loads as specified in Section 604.2.16.1.1.

[B] 604.2.16.1.1 Standby power loads. The following loads are classified as standby power loads:

1. Smoke control system.
2. Ventilation and automatic fire detection equipment for smokeproof enclosures.
3. Fire pumps.
4. Standby power shall be provided for elevators in accordance with Section 3003 of the International Building Code.

[B] 604.2.16.1.2 Pickup time. The standby power system shall pick up its connected loads within 60 seconds of failure of the normal power supply.

604.2.16.2 Emergency power. An emergency power system complying with the International Code Council Electrical Code Administrative Provisions shall be provided for emergency power loads as specified in Section 604.2.15.2.1.

604.2.16.2.1 Emergency power loads. The following loads are classified as emergency power loads:

1. Emergency voice/alarm communication systems.
2. Fire alarm systems.
3. Automatic fire detection systems.
4. Elevator car lighting.
5. Means of egress lighting and exit sign illumination as required by Chapter 10.

604.2.17 Group I-3 occupancies. Power-operated sliding doors or power-operated locks for swinging doors in Group I-3 occupancies shall be operable by a manual release mechanism at the door, and either emergency power or a remote mechanical operating release shall be provided.

Exception: Emergency power is not required in facilities where provisions for remote locking and unlocking of
occupied rooms in Occupancy Condition 4 are not required as set forth in the International Building Code.

604.2.18 Airport traffic control towers. A standby power system shall be provided in airport traffic control towers more than 65 feet (19 812 mm) in height. Power shall be provided to the following equipment:

1. Pressurization equipment, mechanical equipment and lighting.
2. Elevator operating equipment.
3. Fire alarm and smoke detection systems.

604.2.19 Elevators. In buildings and structures where standby power is required or furnished to operate an elevator, the operation shall be in accordance with Sections 604.2.19.1 through 604.2.19.4.

604.2.19.1 Manual transfer. Standby power shall be manually transferable to all elevators in each bank.

604.2.19.2 One elevator. Where only one elevator is installed, the elevator shall automatically transfer to standby power within 60 seconds after failure of normal power.

604.2.19.3 Two or more elevators. Where two or more elevators are controlled by a common operating system, all elevators shall automatically transfer to standby power within 60 seconds after failure of normal power where the standby power source is of sufficient capacity to operate all elevators at the same time. Where the standby power source is not of sufficient capacity to operate all elevators at the same time, all elevators shall transfer to standby power in sequence, return to the designated landing and disconnect from the standby power source. After all elevators have been returned to the designated level, at least one elevator shall remain operable from the standby power source.

604.2.19.4 Venting. Where standby power is connected to elevators, the machine room ventilation or air conditioning shall be connected to the standby power source.

604.2.20 Health care facilities. Automatic emergency and/or standby power supplies shall be provided for all health care facilities, as defined in NFPA 99. The approved alternate power supply shall maintain operating energy to the facility for a period of not less than 90 minutes. Emergency and standby power supplies shall be installed as required in the Oregon Electrical Specialty Code and in accordance with NFPA 99.

604.3 Maintenance. Emergency and standby power systems shall be maintained in accordance with NFPA 110 and NFPA 111 such that the system is capable of supplying service within the time specified for the type and duration required.

604.3.1 Schedule. Inspection, testing and maintenance of emergency and standby power systems shall be in accordance with an approved schedule established upon completion and approval of the system installation.

604.3.2 Written record. Written records of the inspection, testing and maintenance of emergency and standby power systems shall include the date of service, name of the servicing technician, a summary of conditions noted and a detailed description of any conditions requiring correction and what corrective action was taken. Such records shall be kept on the premises served by the emergency or standby power system and be available for inspection by the fire code official.

604.3.3 Switch maintenance. Emergency and standby power system transfer switches shall be included in the inspection, testing and maintenance schedule required by Section 604.3.1. Transfer switches shall be maintained free from accumulated dust and dirt. Inspection shall include examination of the transfer switch contacts for evidence of deterioration. When evidence of contact deterioration is detected, the contacts shall be replaced in accordance with the transfer switch manufacturer’s instructions.

604.4 Operational inspection and testing. Emergency power systems, including all appurtenant components shall be inspected and tested under load in accordance with NFPA 110 and NFPA 111.

Exception: Where the emergency power system is used for standby power or peak load shaving, such use shall be recorded and shall be allowed to be substituted for scheduled testing of the generator set, provided that appropriate records are maintained.

604.4.1 Transfer switch test. The test of the transfer switch shall consist of electrically operating the transfer switch from the normal position to the alternate position and then return to the normal position.

604.5 Supervision of maintenance and testing. Routine maintenance, inspection and operational testing shall be overseen by a properly instructed individual.

SECTION 605
ELECTRICAL EQUIPMENT, WIRING AND HAZARDS

605.1 Abatement of electrical hazards. Identified electrical hazards shall be abated. Identified hazardous electrical conditions in permanent wiring shall be brought to the attention of the code official responsible for enforcement of the International Code Council Electrical Code Administrative Provisions. Electrical wiring, devices, appliances and other equipment that is modified or damaged and constitutes an electrical shock or fire hazard shall not be used.

605.2 Illumination. Illumination shall be provided for service equipment areas, motor control centers and electrical panelboards.

605.3 Working space and clearance. A working space of not less than 30 inches (762 mm) in width, 36 inches (914 mm) in depth and 78 inches (1981 mm) in height shall be provided in front of electrical service equipment. Where the electrical service equipment is wider than 30 inches (762 mm), the working space shall not be less than the width of the equipment. No stor-
Building Services and Systems

Age of any materials shall be located within the designated working space.

Exceptions:

1. Where other dimensions are required or allowed by the International Code Council Electrical Code Administrative Provisions.
2. Access openings into attics or under-floor areas which provide a minimum clear opening of 22 inches (559 mm) by 30 inches (762 mm).

605.3.1 Labeling. Doors into electrical control panel rooms shall be marked with a plainly visible and legible sign stating ELECTRICAL ROOM or similar approved wording. The disconnecting means for each service, feeder or branch circuit originating on a switchboard or panelboard shall be legibly and durably marked to indicate its purpose unless such purpose is clearly evident.

605.4 Multiplug adapters. Multiplug adapters, such as cube adapters, unfused plug strips or any other device not complying with the International Code Council Electrical Code Administrative Provisions shall be prohibited.

605.4.1 Power tap design. Relocatable power taps shall be of the polarized or grounded type, equipped with overcurrent protection, and shall be listed in accordance with UL 1363.

605.4.2 Power supply. Relocatable power taps shall be directly connected to a permanently installed receptacle.

605.4.3 Installation. Relocatable power tap cords shall not extend through walls, ceilings, floors, under doors or floor coverings, or be subject to environmental or physical damage.

605.5 Extension cords. Extension cords and flexible cords shall not be a substitute for permanent wiring. Extension cords and flexible cords shall not be affixed to structures, extended through walls, ceilings or floors, or under doors or floor coverings, or be subject to environmental or physical damage. Extension cords shall be used only with portable appliances.

605.5.1 Power supply. Extension cords shall be plugged directly into an approved receptacle, power tap or multiplug adapter and, except for approved multiplug extension cords, shall serve only one portable appliance.

605.5.2 Ampacity. The ampacity of the extension cords shall not be less than the rated capacity of the portable appliance supplied by the cord.

605.5.3 Maintenance. Extension cords shall be maintained in good condition without splices, deterioration or damage.

605.5.4 Grounding. Extension cords shall be grounded when serving grounded portable appliances.

605.6 Unapproved conditions. Open junction boxes and open-wiring splices shall be prohibited. Approved covers shall be provided for all switch and electrical outlet boxes.

605.7 Appliances. Electrical appliances and fixtures shall be tested and listed in published reports of inspected electrical equipment by an approved agency and installed and maintained in accordance with all instructions included as part of such listing.

605.8 Electrical motors. Electrical motors shall be maintained free from excessive accumulations of oil, dirt, waste and debris.

605.9 Temporary wiring. Temporary wiring for electrical power and lighting installations is allowed for a period not to exceed 90 days. Temporary wiring methods shall meet the applicable provisions of the International Code Council Electrical Code Administrative Provisions.

Exception: Temporary wiring for electrical power and lighting installations is allowed during periods of construction, remodeling, repair or demolition of buildings, structures, equipment or similar activities.

605.9.1 Attachment to structures. Temporary wiring attached to a structure shall be attached in an approved manner.

605.10 Portable, electric space heaters. Portable, electric space heaters shall comply with Sections 605.10.1 through 605.10.4. The use of portable space heating devices in Group I and SR occupancies shall be prohibited.

Exception: Portable space heating devices may be permitted to be used in nonsleeping staff and employee areas.

605.10.1 Listed and labeled. Only listed and labeled portable, electric space heaters shall be used.

605.10.2 Power supply. Portable, electric space heaters shall be plugged directly into an approved receptacle.

605.10.3 Extension cords. Portable, electric space heaters shall not be plugged into extension cords.

605.10.4 Prohibited areas. Portable, electric space heaters shall not be operated within 3 feet (914 mm) of any combustible materials. Portable, electric space heaters shall be operated only in locations for which they are listed.

Section 606 Mechanical Refrigeration

[M] 606.1 Scope. Refrigeration systems shall be installed in accordance with the International Mechanical Code.

[M] 606.2 Refrigerants. The use and purity of new, recovered, and reclaimed refrigerants shall be in accordance with the International Mechanical Code.

[M] 606.3 Refrigerant classification. Refrigerants shall be classified in accordance with the International Mechanical Code.

[M] 606.4 Change in refrigerant type. A change in the type of refrigerant in a refrigeration system shall be in accordance with the International Mechanical Code.

606.5 Access. Refrigeration systems having a refrigerant circuit containing more than 220 pounds (100 kg) of Group A1 or 30 pounds (14 kg) of any other group refrigerant shall be acces-
606.6 Testing of equipment. Refrigeration equipment and systems having a refrigerant circuit containing more than 220 pounds (100 kg) of Group A1 or 30 pounds (14 kg) of any other group refrigerant shall be subject to periodic testing in accordance with Section 606.6.1. A written record of required testing shall be maintained on the premises. Tests of emergency devices or systems required by this chapter shall be conducted by persons trained and qualified in refrigeration systems.

606.6.1 Periodic testing. The following emergency devices or systems shall be periodically tested in accordance with the manufacturer’s instructions and as required by the fire code official.

1. Treatment and flaring systems.
2. Valves and appurtenances necessary to the operation of emergency refrigeration control boxes.
3. Fans and associated equipment intended to operate emergency ventilation systems.
4. Detection and alarm systems.

606.7 Emergency signs. Refrigeration units or systems having a refrigerant circuit containing more than 220 pounds (100 kg) of Group A1 or 30 pounds (14 kg) of any other group refrigerant shall be provided with approved emergency signs, charts, and labels in accordance with NFPA 704. Hazard signs shall be in accordance with the *International Mechanical Code* for the classification of refrigerants listed therein.

606.8 Refrigerant detector. Machinery rooms shall contain a refrigerant detector with an audible and visual alarm. The detector, or a sampling tube that draws air to the detector, shall be located in an area where refrigerant from a leak will concentrate. The alarm shall be actuated at a value not greater than the corresponding TLV-TWA values shown in the *International Mechanical Code* for the refrigerant classification. Detectors and alarms shall be placed in approved locations.

606.9 Remote controls. Remote control of the mechanical equipment and appliances located in the machinery room shall be provided at an approved location immediately outside the machinery room and adjacent to its principal entrance.

606.9.1 Refrigeration system. A clearly identified switch of the break-glass type shall provide off-only control of electrically energized equipment and appliances in the machinery room, other than refrigerant leak detectors and machinery room ventilation.

Exception: In machinery rooms where only nonflammable refrigerants are used, electrical equipment and appliances, other than compressors, are not required to be provided with a cut-off switch.

606.9.2 Ventilation system. A clearly identified switch of the break-glass type shall provide on-only control of the machinery room ventilation fans.

606.10 Emergency pressure control system. Refrigeration systems containing more than 6.6 pounds (3 kg) of flammable, toxic or highly toxic refrigerant or ammonia shall be provided with an emergency pressure control system in accordance with Sections 606.10.1 and 606.10.2.

606.10.1 Automatic crossover valves. Each high- and intermediate-pressure zone in a refrigeration system shall be provided with a single automatic valve providing a crossover connection to a lower pressure zone. Automatic crossover valves shall comply with Sections 606.10.1.1 through 606.10.1.3.

606.10.1.1 Overpressure limit setpoint. Automatic crossover valves shall be arranged to automatically relieve excess system pressure to a lower pressure zone if the pressure in a high- or intermediate-pressure zone rises to within 15 psi (108.4 kPa) of the set point for emergency pressure-relief devices.

606.10.1.2 Manual operation. When required by the fire code official, automatic crossover valves shall be capable of manual operation.

606.10.1.3 System design pressure. Refrigeration system zones that are connected to a higher pressure zone by an automatic crossover valve shall be designed to safely contain the maximum pressure that can be achieved by interconnection of the two zones.

606.10.2 Automatic emergency stop. An automatic emergency stop feature shall be provided in accordance with Sections 606.10.2.1 and 606.10.2.2.

606.10.2.1 Operation of an automatic crossover valve. Operation of an automatic crossover valve shall cause all compressors on the affected system to immediately stop. Dedicated pressure-sensing devices located immediately adjacent to crossover valves shall be permitted as a means for determining operation of a valve. To ensure that the automatic crossover valve system provides a redundant means of stopping compressors in an overpressure condition, high-pressure cutout sensors associated with compressors shall not be used as a basis for determining operation of a crossover valve.

606.10.2.2 Overpressure in low-pressure zone. The lowest pressure zone in a refrigeration system shall be provided with a dedicated means of determining a rise in system pressure to within 15 psi (103.4 kPa) of the setpoint for emergency pressure-relief devices. Activation of the overpressure sensing device shall cause all compressors on the affected system to immediately stop.

606.11 Storage, use and handling. Flammable and combustible materials shall not be stored in machinery rooms for refrigeration systems having a refrigerant circuit containing more than 220 pounds (100 kg) of Group A1 or 30 pounds (14 kg) of any other group refrigerant. Storage, use or handling of extra refrigerant or refrigerant oils shall be as required by Chapters 27, 30, 32 and 34.

Exception: This provision shall not apply to spare parts, tools, and incidental materials necessary for the safe and proper operation and maintenance of the system.

606.12 Termination of relief devices. Pressure relief devices, fusible plugs and purge systems for refrigeration systems containing more than 6.6 pounds (3 kg) of flammable, toxic or
highly toxic refrigerants shall be provided with an approved discharge system as required by Sections 606.12.1, 606.12.2 and 606.12.3. Discharge piping and devices connected to the discharge side of a fusible plug or rupture member shall have provisions to prevent plugging the pipe in the event of the fusible plug or rupture member functions.

606.12.1 Flammable refrigerants. Systems containing flammable refrigerants having a density equal to or greater than the density of air shall discharge vapor to the atmosphere only through an approved treatment system in accordance with Section 606.12.4 or a flaring system in accordance with Section 606.12.5. Systems containing flammable refrigerants having a density less than the density of air shall be permitted to discharge vapor to the atmosphere provided that the point of discharge is located outside of the structure at not less than 15 feet (4572 mm) above the adjoining grade level and not less than 20 feet (6096 mm) from any window, ventilation opening or exit.

606.12.2 Toxic and highly toxic refrigerants. Systems containing toxic or highly toxic refrigerants shall discharge vapor to the atmosphere only through an approved treatment system in accordance with Section 606.12.4 or a flaring system in accordance with Section 606.12.5.

606.12.3 Ammonia refrigerant. Systems containing ammonia refrigerant shall discharge vapor to the atmosphere through an approved treatment system in accordance with Section 606.12.4, a flaring system in accordance with Section 606.12.5, or through an approved ammonia diffusion system in accordance with Section 606.12.6, or by other approved means.

Exceptions:

1. Ammonia/water absorption systems containing less than 22 pounds (10 kg) of ammonia and for which the ammonia circuit is located entirely outdoors.

2. When the fire code official determines, on review of an engineering analysis prepared in accordance with Section 104.7.2, that a fire, health or environmental hazard would not result from discharging ammonia directly to the atmosphere.

606.12.4 Treatment systems. Treatment systems shall be designed to reduce the allowable discharge concentration of the refrigerant gas to not more than 50 percent of the IDLH at the point of exhaust. Treatment systems shall be in accordance with Chapter 37.

606.12.5 Flaring systems. Flaring systems for incineration of flammable refrigerants shall be designed to incinerate the entire discharge. The products of refrigerant incineration shall not pose health or environmental hazards. Incineration shall be automatic upon initiation of discharge, shall be designed to prevent blowback, and shall not expose structures or materials to threat of fire. Standby fuel, such as LP gas, and standby power shall have the capacity to operate for one and one-half the required time for complete incineration of refrigerant in the system.

606.12.6 Ammonia diffusion systems. Ammonia diffusion systems shall include a tank containing 1 gallon of water for each pound of ammonia (4 L of water for each 1 kg of ammonia) that will be released in 1 hour from the largest relief device connected to the discharge pipe. The water shall be prevented from freezing. The discharge pipe from the pressure relief device shall distribute ammonia in the bottom of the tank, but no lower than 33 feet (10 058 mm) below the maximum liquid level. The tank shall contain the volume of water and ammonia without overflowing.

606.13 Discharge location for refrigeration machinery room ventilation. Exhaust from mechanical ventilation systems serving refrigeration machinery rooms capable of exceeding 25 percent of the LFL or 50 percent of the IDLH shall be equipped with approved treatment systems to reduce the discharge concentrations of flammable, toxic or highly toxic refrigerants to those values or lower.

606.14 Notification of refrigerant discharges. The fire code official shall be notified immediately when a discharge becomes reportable under state, federal or local regulations in accordance with Section 2703.3.1.

606.15 Records. A written record shall be kept of refrigerant quantities brought into and removed from the premises. Such records shall be available to the fire code official.

606.16 Electrical equipment. Where refrigerants of Groups A-2, A-3, B-2 and B-3, as defined in the International Mechanical Code, are used, refrigeration machinery rooms shall conform to the Class I, Division 2, hazardous location classification requirements of the International Code Council Electrical Code Administrative Provisions.

Exception: Ammonia machinery rooms that are provided with ventilation in accordance with Section 1106.3 of the International Mechanical Code.

SECTION 607
ELEVATOR RECALL AND MAINTENANCE

607.1 Required. Existing elevators with a travel distance of 25 feet (7620 mm) or more above or below the main floor or other level of a building and intended to serve the needs of emergency personnel for fire-fighting or rescue purposes shall be provided with emergency operation in accordance with ASME A17.3. New elevators shall be provided with Phase I emergency recall operation and Phase II emergency in-car operation in accordance with ASME A17.1.

[B] 607.2 Emergency signs. An approved pictorial sign of a standardized design shall be posted adjacent to each elevator call station on all floors instructing occupants to use the exit stairways and not to use the elevators in case of fire. The sign shall read: IN FIRE EMERGENCY, DO NOT USE ELEVATOR. USE EXIT STAIRS. The emergency sign shall not be required for elevators that are part of an accessible means of egress complying with Section 1007.4.

607.3 Elevator keys. Keys for the elevator car doors and fire-fighter service keys shall be kept in an approved location for immediate use by the fire department.
SECTION 608
STATIONARY STORAGE BATTERY SYSTEMS

608.1 Scope. Stationary storage battery systems having an electrolyte capacity of more than 50 gallons (189 L) for flooded lead acid, nickel-cadmium (Ni-Cd) and valve-regulated lead acid (VRLA), or 1,000 pounds (454 kg) for lithium-ion, used for facility standby power, emergency power or uninterrupted power supplies, shall comply with this section and Table 608.1.

608.2 Safety caps. Safety caps for stationary storage battery systems shall comply with Sections 608.2.1 and 608.2.2.

608.2.1 Nonrecombinant batteries. Vented lead acid, nickel-cadmium or other types of nonrecombinant batteries shall be provided with safety venting caps.

608.2.2 Recombinant batteries. VRLA batteries shall be equipped with self-resealing flame-arresting safety vents.

608.3 Thermal runaway. VRLA battery systems shall be provided with a listed device or other approved method to preclude, detect and control thermal runaway.

608.4 Room design and construction. Enclosure of stationary battery systems shall comply with the International Building Code. Battery systems shall be allowed to be in the same room with the equipment they support.

608.4.1 Separate rooms. When stationary batteries are installed in a separate equipment room accessible only to authorized personnel, they shall be permitted to be installed on an open rack for ease of maintenance.

608.4.2 Occupied work centers. When a system of VRLA, lithium-ion, or other type of sealed, nonventing batteries is situated in an occupied work center, it shall be allowed to be housed in a noncombustible cabinet or other enclosure to prevent access by unauthorized personnel.

608.5 Spill control and neutralization. An approved method and materials for the control and neutralization of a spill of electrolyte shall be provided in areas containing lead-acid, nickel-cadmium or other types of batteries with free-flowing liquid electrolyte. For purposes of this paragraph, a “spill” is defined as any unintentional release of electrolyte.

Exception: VRLA, lithium-ion or other types of sealed batteries with immobilized electrolyte shall not require spill control.

608.5.1 Nonrecombinant battery neutralization. For battery systems containing lead-acid, nickel-cadmium or other types of nonrecombinant batteries, the method and materials shall be capable of neutralizing a spill from the largest lead-acid battery to a pH between 7.0 and 9.0.

608.5.2 Recombinant battery neutralization. For VRLA or other types of sealed batteries with immobilized electrolyte, the method and material shall be capable of neutralizing a spill of 3 percent of the capacity of the largest VRLA cell or block in the room to a pH between 7.0 and 9.0.

Exception: Lithium-ion batteries shall not require neutralization.

608.6 Ventilation. Ventilation of stationary storage battery systems shall comply with Sections 608.6.1 and 608.6.2.

608.6.1 Room ventilation. Ventilation shall be provided in accordance with the International Mechanical Code and the following:

1. For flooded lead acid, flooded nickel-cadmium, and VRLA batteries, the ventilation system shall be
designated to limit the maximum concentration of hydrogen to 1 percent of the total volume of the room; or

2. Continuous ventilation shall be provided at a rate of not less than 1 cubic foot per minute per square foot \([1 \text{ ft}^3/\text{min}/\text{ft}^2\text{ or }0.0051 \text{ m}^3/(s \cdot \text{m}^2)]\) of floor area of the room.

Exception: Lithium-ion batteries shall not require ventilation.

608.6.2 Cabinet ventilation. When VRLA batteries are installed inside a cabinet, the cabinet shall be approved for use in occupied spaces and shall be mechanically or naturally vented by one of the following methods:

1. The cabinet ventilation shall limit the maximum concentration of hydrogen to 1 percent of the total volume of the cabinet during the worst-case event of simultaneous “boost” charging of all the batteries in the cabinet; or

2. When calculations are not available to substantiate the ventilation rate, continuous ventilation shall be provided at a rate of not less than 1 cubic foot per minute per square foot \([1 \text{ ft}^3/\text{min}/\text{ft}^2\text{ or }0.0051 \text{ m}^3/(s \cdot \text{m}^2)]\) of floor area covered by the cabinet. The room in which the cabinet is installed shall also be ventilated as required in Section 608.6.1.

608.7 Signage. Signs shall comply with Sections 608.7.1 and 608.7.2.

608.7.1 Equipment room and building signage. Doors into electrical equipment rooms or buildings containing stationary battery systems shall be provided with approved signs. The signs shall state that:

1. The room contains energized battery systems.
2. The room contains energized electrical circuits.
3. The battery electrolyte solutions, where present, are corrosive liquids.

608.7.2 Cabinet signage. Cabinets shall have exterior labels that identify the manufacturer and model number of the system and electrical rating (voltage and current) of the contained battery system. There shall be signs within the cabinet that indicate the relevant electrical, chemical and fire hazards.

608.8 Seismic protection. The battery systems shall be seismically braced in accordance with the International Building Code.

608.9 Smoke detection. An approved automatic smoke detection system shall be installed in accordance with Section 907.2 in rooms containing stationary battery systems.

SECTION 609 COMMERCIAL KITCHEN HOODS

[M] 609.1 General. Commercial kitchen exhaust hoods shall comply with the requirements of the International Mechanical Code.

609.2 Where required. A Type I hood shall be installed at or above all commercial cooking appliances and domestic cooking appliances used for commercial purposes that produce grease vapors. Where any cooking appliance under a single hood requires a Type I hood, a Type I hood shall be installed. Where a Type II hood is required, a Type I or Type II hood shall be installed.

609.2.1 Type I hoods. Type I hoods shall be installed where cooking appliances produce grease or smoke, such as occurs with griddles, fryers, broilers, ovens, ranges, and wok ranges.

609.2.2 Type II hoods. Type II hoods shall be installed where cooking or dishwashing appliances produce heat or steam and do not produce grease or smoke, such as steamers, kettles, pasta cookers and dishwashing machines.

Exceptions:

1. Under-counter-type commercial dishwashing machines.
2. A Type II hood is not required for dishwashers and potwashers that are provided with heat and water vapor exhaust systems that are supplied by the appliance manufacturer and are installed in accordance with the manufacturer’s instructions.
3. A single light-duty electric convection, bread, retherm or microwave oven. The additional heat and moisture loads generated by such appliances shall be accounted for in the design of the HVAC systems.
4. A Type II hood is not required for the following electrically heated appliances: toasters, steam tables, popcorn poppers, hot dog cookers, coffee makers, rice cookers, egg cookers, holding/warming ovens. The additional heat and moisture loads generated by such appliances shall be accounted for in the design of the HVAC system.

609.2.3 Domestic cooking appliances used for commercial purposes. Domestic cooking appliances utilized for commercial purposes shall be provided with Type I or Type II hoods as required for the type of appliances and processes in accordance with Sections 609.2, 609.2.1 and 609.2.2.

Exception: Oregon Mechanical Code Interpretive Ruling 93-33 provides when domestic ranges and ovens are used for heating or occasional preparation of foods, such as lunches, potlucks, etc., a commercial hood is not required. If dinners are prepared on a regular basis, or more than two residential ranges are used, a Type II hood is required. If a commercial range is installed or grease-producing equipment is used, a Type I hood must be installed.

609.2.4 Extra-heavy duty. Type I hoods for use over extra-heavy duty cooking appliances shall not cover other appliances that require fire extinguishing equipment and such hoods shall discharge to an exhaust system that is independent of other exhaust systems.